深入理解 ServiceManager
ServiceManager是安卓中一个重要的类,用于管理所有的系统服务,维护着系统服务和客户端的binder通信。
对此陌生的可以先看系统服务与ServiceManager来了解应用层是如何使用ServiceManager的。
我们可以通过 ServiceManager.getService(String name)来获取服务,返回的是一个Binder对象,用于与系统做远程通信。
public static IBinder getService(String name) {
try {
IBinder service = sCache.get(name);
if (service != null) {
return service;
} else {
return getIServiceManager().getService(name);
}
} catch (RemoteException e) {
Log.e(TAG, "error in getService", e);
}
return null;
}
这里的sCache是一个Map,如果cache中有这个Binder对象就直接返回了,如果没有就调用getIServiceManager().getService(name)来获取
private static IServiceManager getIServiceManager() {
if (sServiceManager != null) {
return sServiceManager;
}
// Find the service manager
sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject());
return sServiceManager;
}
可以看到这里返回了一个IServiceManager,它也是一个Binder对象,最终获取服务用的就是这个Binder对象。
并且是通过BinderInternal.getContextObject()来拿到Binder对象的。
/**
* Return the global "context object" of the system. This is usually
* an implementation of IServiceManager, which you can use to find
* other services.
*/
public static final native IBinder getContextObject();
它实现在frameworks/base/core/jni/android_util_Binder.cpp文件中:
static jobject android_os_BinderInternal_getContextObject(JNIEnv* env, jobject clazz)
{
sp b = ProcessState::self()->getContextObject(NULL);
return javaObjectForIBinder(env, b);
}
这里应该不难理解,先获取一个native层的IBinder,再将该对象转换成Java Object返回给调用者,在Java层拿到的应该是一个ServiceManagerProxy对象。
先看第一部获取native层的IBinder对象:
sp b = ProcessState::self()->getContextObject(NULL);
在ProcessState的构造函数中,会通过open文件操作函数打开设备文件/dev/binder,并且返回来的设备文件描述符保存在成员变量mDriverFD中,供后续在IPCThreadState中使用
需要注意的是这里传了一个NULL,也就是0,下面会提到它的作用:
[ProcessState.cpp]
sp ProcessState::getContextObject(const sp& /*caller*/)
{
return getStrongProxyForHandle(0);
}
sp ProcessState::getStrongProxyForHandle(int32_t handle)
{
sp result;
AutoMutex _l(mLock);
handle_entry* e = lookupHandleLocked(handle);
if (e != NULL) {
IBinder* b = e->binder;
if (b == NULL || !e->refs->attemptIncWeak(this)) {
if (handle == 0) {
Parcel data;
status_t status = IPCThreadState::self()->transact(
0, IBinder::PING_TRANSACTION, data, NULL, 0);
if (status == DEAD_OBJECT)
return NULL;
}
b = new BpBinder(handle);
e->binder = b;
if (b) e->refs = b->getWeakRefs();
result = b;
} else {
// This little bit of nastyness is to allow us to add a primary
// reference to the remote proxy when this team doesn't have one
// but another team is sending the handle to us.
result.force_set(b);
e->refs->decWeak(this);
}
}
return result;
}
可以看到,最终返回的对象是:b = new BpBinder(handle); 并将handler传了进去
这里的handler即是之前传进来的0,代表一个句柄,这个句柄是有特殊意义的。
我们知道在Java层有两类Binder,一个是Binder对象用于服务端建立的对象,一个是BinderProxy是客户端取到的Binder对象。
native层也有两类Binder,一个是BpBinder,一个是BBinder:
BpBinder是客户端用来与Server交互的代理类,p即Proxy的意思,
BBinder则是proxy交互的目的端,
并且他们是一一对应的。
继续回到代码,创建了一个BpBinder对象,传进去的hande为0,那么他是怎么找到对应的BBinder的呢?
事实上,handle代表了通信的目的端,这个0代表的就是ServiceManager所对应的BBinder。
继续往下看,通过上面获取的对象创建一个Java层的Binder对象并返回:
[android_util_Binder.cpp]
return javaObjectForIBinder(env, b)
继续看创建Java层对象的过程:
[android_util_Binder.cpp]
jobject javaObjectForIBinder(JNIEnv* env, const sp& val)
{
if (val == NULL) return NULL;
if (val->checkSubclass(&gBinderOffsets)) {
// One of our own!
jobject object = static_cast<JavaBBinder*>(val.get())->object();
LOGDEATH("objectForBinder {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p: it's our own {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p!\n", val.get(), object);
return object;
}
// For the rest of the function we will hold this lock, to serialize
// looking/creation/destruction of Java proxies for native Binder proxies.
AutoMutex _l(mProxyLock);
// Someone else's... do we know about it?
jobject object = (jobject)val->findObject(&gBinderProxyOffsets);
if (object != NULL) {
jobject res = jniGetReferent(env, object);
if (res != NULL) {
ALOGV("objectForBinder {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p: found existing {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p!\n", val.get(), res);
return res;
}
LOGDEATH("Proxy object {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p of IBinder {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p no longer in working set!!!", object, val.get());
android_atomic_dec(&gNumProxyRefs);
val->detachObject(&gBinderProxyOffsets);
env->DeleteGlobalRef(object);
}
object = env->NewObject(gBinderProxyOffsets.mClass, gBinderProxyOffsets.mConstructor);
if (object != NULL) {
LOGDEATH("objectForBinder {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p: created new proxy {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}p !\n", val.get(), object);
// The proxy holds a reference to the native object.
env->SetLongField(object, gBinderProxyOffsets.mObject, (jlong)val.get());
val->incStrong((void*)javaObjectForIBinder);
// The native object needs to hold a weak reference back to the
// proxy, so we can retrieve the same proxy if it is still active.
jobject refObject = env->NewGlobalRef(
env->GetObjectField(object, gBinderProxyOffsets.mSelf));
val->attachObject(&gBinderProxyOffsets, refObject,
jnienv_to_javavm(env), proxy_cleanup);
// Also remember the death recipients registered on this proxy
sp drl = new DeathRecipientList;
drl->incStrong((void*)javaObjectForIBinder);
env->SetLongField(object, gBinderProxyOffsets.mOrgue, reinterpret_cast(drl.get()));
// Note that a new object reference has been created.
android_atomic_inc(&gNumProxyRefs);
incRefsCreated(env);
}
return object;
}
可以看到有两处返回语句,跳过第一处取缓存对象,直接往下看:
object = env->NewObject(gBinderProxyOffsets.mClass, gBinderProxyOffsets.mConstructor);
这里创建了一个BinderProxy对象,这时候这个对象与Native层用于通信的BpBinder没有任何关系,继续往下看:
env->SetLongField(object, gBinderProxyOffsets.mObject, (jlong)val.get());
这里是把BpBinder对象的地址赋值给了BinderProxy对象的mObject字段,通过这种手段将Java层的对象与Native层的对象关联在了一起。
然后我们操作Java层BinderProxy对象的native方法的时候,就能定位到对应的BpBinder对象了。
并且把这个Java层的对象放到了BpBinder对象中,之后就不用再次创建了:
jobject refObject = env->NewGlobalRef(
env->GetObjectField(object, gBinderProxyOffsets.mSelf));
val->attachObject(&gBinderProxyOffsets, refObject,
jnienv_to_javavm(env), proxy_cleanup);
回到Java层代码,我们通过下面代码来获取一个可以调用的ServiceManager对象:
sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject());
看过Android IPC 机制的应该知道,这里返回的是一个ServiceManagerProxy对象,里面持有一个名为面Remote的IBiner对象,从上面可以看到这个mRemote就是之前拿到的BinderProxy,真正进行进程间通信的时候会调用BinderProxy的transact方法,然后在它的内部调用transactNative方法。
再次来到native层,调用如下方法:
[android_util_Binder.cpp]
static jboolean android_os_BinderProxy_transact(JNIEnv* env, jobject obj,
jint code, jobject dataObj, jobject replyObj, jint flags) // throws RemoteException
{
//...
IBinder* target = (IBinder*)
env->GetLongField(obj, gBinderProxyOffsets.mObject);
if (target == NULL) {
jniThrowException(env, "java/lang/IllegalStateException", "Binder has been finalized!");
return JNI_FALSE;
}
bool time_binder_calls;
int64_t start_millis;
if (kEnableBinderSample) {
time_binder_calls = should_time_binder_calls();
if (time_binder_calls) {
start_millis = uptimeMillis();
}
}
status_t err = target->transact(code, *data, reply, flags);
if (kEnableBinderSample) {
if (time_binder_calls) {
conditionally_log_binder_call(start_millis, target, code);
}
}
if (err == NO_ERROR) {
return JNI_TRUE;
} else if (err == UNKNOWN_TRANSACTION) {
return JNI_FALSE;
}
signalExceptionForError(env, obj, err, true /*canThrowRemoteException*/, data->dataSize());
return JNI_FALSE;
}
为什么是这个方法呢?这里在简单的书一下jni,有静态注册和动态注册两种方法,这里用的是动态注册,会用到如下定义:
static const JNINativeMethod gBinderProxyMethods[] = {
/* name, signature, funcPtr */
{"pingBinder", "()Z", (void*)android_os_BinderProxy_pingBinder},
{"isBinderAlive", "()Z", (void*)android_os_BinderProxy_isBinderAlive},
{"getInterfaceDescriptor", "()Ljava/lang/String;", (void*)android_os_BinderProxy_getInterfaceDescriptor},
{"transactNative", "(ILandroid/os/Parcel;Landroid/os/Parcel;I)Z", (void*)android_os_BinderProxy_transact},
{"linkToDeath", "(Landroid/os/IBinder$DeathRecipient;I)V", (void*)android_os_BinderProxy_linkToDeath},
{"unlinkToDeath", "(Landroid/os/IBinder$DeathRecipient;I)Z", (void*)android_os_BinderProxy_unlinkToDeath},
{"destroy", "()V", (void*)android_os_BinderProxy_destroy},
};
包括Java层方法名,方法签名,调用的函数指针。
这里不过多展开了,继续:
IBinder* target = (IBinder*)env->GetLongField(obj, gBinderProxyOffsets.mObject);
可以看到这里用到了之前保存在BinderProxy中的的mObject字段,拿到了原始的BpBinder对象。
然后调用BpBinder对象的transact方法:
status_t err = target->transact(code, *data, reply, flags);
下面看BpBinder的transact方法:
[BpBinder.cpp]
status_t BpBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
// Once a binder has died, it will never come back to life.
if (mAlive) {
status_t status = IPCThreadState::self()->transact(
mHandle, code, data, reply, flags);
if (status == DEAD_OBJECT) mAlive = 0;
return status;
}
return DEAD_OBJECT;
}
BpBinder只是一个转发工具,最终由IPCThreadState执行:
status_t status = IPCThreadState::self()->transact(mHandle, code, data, reply, flags);
并且带上了代表BBinder对象的mHandle。
[IPCThreadState.cpp]
status_t IPCThreadState::transact(int32_t handle,uint32_t code, const Parcel& data,Parcel* reply, uint32_t flags)
{
status_t err = data.errorCheck();
flags |= TF_ACCEPT_FDS;
if (err == NO_ERROR) {
LOG_ONEWAY(">>>> SEND from pid {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}d uid {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}d {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}s", getpid(), getuid(),
(flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
}
if (err != NO_ERROR) {
if (reply) reply->setError(err);
return (mLastError = err);
}
if ((flags & TF_ONE_WAY) == 0) {
#if 0
if (code == 4) { // relayout
ALOGI(">>>>>> CALLING transaction 4");
} else {
ALOGI(">>>>>> CALLING transaction {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}d", code);
}
#endif
if (reply) {
err = waitForResponse(reply);
} else {
Parcel fakeReply;
err = waitForResponse(&fakeReply);
}
#if 0
if (code == 4) { // relayout
ALOGI("<<<<<< RETURNING transaction 4");
} else {
ALOGI("<<<<<< RETURNING transaction {936b63963a8c9f2b24063da536a495a32039ff9ed9d82cacc18dd4741407c351}d", code);
}
#endif
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "
<< handle << ": ";
if (reply) alog << indent << *reply << dedent << endl;
else alog << "(none requested)" << endl;
}
} else {
err = waitForResponse(NULL, NULL);
}
return err;
}
有两个方法调用需要关注:
err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
err = waitForResponse(NULL, NULL);
一个是写数据,一个是等待相应。在此之前假设我们知道:
每个线程都有一个IPCThreadState,每个IPCThreadState中都有一个mIn、一个mOut,其中mIn是用来接收来自Binder设备的数据的,而mOut则是用来存储发往Binder设备的数据的。
先看写数据:
status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
binder_transaction_data tr;
tr.target.ptr = 0; /* Don't pass uninitialized stack data to a remote process */
tr.target.handle = handle;
tr.code = code;
tr.flags = binderFlags;
tr.cookie = 0;
tr.sender_pid = 0;
tr.sender_euid = 0;
const status_t err = data.errorCheck();
if (err == NO_ERROR) {
tr.data_size = data.ipcDataSize();
tr.data.ptr.buffer = data.ipcData();
tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t);
tr.data.ptr.offsets = data.ipcObjects();
} else if (statusBuffer) {
tr.flags |= TF_STATUS_CODE;
*statusBuffer = err;
tr.data_size = sizeof(status_t);
tr.data.ptr.buffer = reinterpret_cast(statusBuffer);
tr.offsets_size = 0;
tr.data.ptr.offsets = 0;
} else {
return (mLastError = err);
}
mOut.writeInt32(cmd);
mOut.write(&tr, sizeof(tr));
return NO_ERROR;
}
特别注意这里:tr.target.handle = handle;通信的目标值是handle,也就是之前传的0;最后写入到mOut中;
真正执行在waitForResponse方法中,这个方法是一个死循环,一直在读取mIn的数据,最后会根据code进行分发,调用executeCommand方法,
在executeCommand方法内部获取BBinder调用transact:
error = reinterpret_cast(tr.cookie)->transact(tr.code, buffer,&reply, tr.flags);
这里的mIn与mOut便是真正的进程间通信,可以查看IPCThreadState::talkWithDriver方法与Binder驱动通信,使用ioctl方式的方式读写/dev/binder虚拟设备。
关于Binder的深入分析,下次有机会再分享。
那么ServiceManager的服务是如何注册的呢?
在native层可以通过下面代码获取IServiceManager:
spsm = defaultServiceManager()
然后各个服务模块会通过IServiceManager的addService方法将各自的模块注册到系统这个唯一的ServiceManager中
[IServiceManager.cpp]
sp defaultServiceManager()
{
if (gDefaultServiceManager != NULL) return gDefaultServiceManager;
{
AutoMutex _l(gDefaultServiceManagerLock);
while (gDefaultServiceManager == NULL) {
gDefaultServiceManager = interface_cast(
ProcessState::self()->getContextObject(NULL));
if (gDefaultServiceManager == NULL)
sleep(1);
}
}
return gDefaultServiceManager;
}
可以看到这个是单例,通过下面代码初始化:
gDefaultServiceManager = interface_cast(ProcessState::self()->getContextObject(NULL));
ProcessState::self()->getContextObject(NULL)这个之前分析过了获取的是ServiceManager的BpBinder对象,
然后转换成BpServiceManager对象供其他服务模块使用,这里用到了模板函数和宏定义最终返回的是 new BpServiceManager(ProcessState::self()->getContextObject(NULL))。
关于Binder的内容还有很多,限于篇幅的缘故本篇文章只简单的谈及了ServiceManager的相关部分,还有一些遗漏的未涉及到的内容以后再补充,之后还会再系统的分析一下Binder。
免费分享,随意打赏
开发者头条
感谢分享!已推荐到《开发者头条》:https://toutiao.io/posts/rx51ql 欢迎点赞支持!
欢迎订阅《pqpo》https://toutiao.io/subject/55960